Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
योग
उत्तर
\[\int\frac{\cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2 dt\]
\[Now, \int\frac{\cos \sqrt{x}}{\sqrt{x}}dx\]
\[ = 2\int\text{cos t dt} \]
\[ = 2 \sin t + C\]
\[ = 2 \sin \sqrt{x} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^3 \text{ log x dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`