Advertisements
Advertisements
प्रश्न
\[\int e^x \left( \cos x - \sin x \right) dx\]
योग
उत्तर
\[\text{ Let I } = \int e^x \left( \cos x - \sin x \right) dx \]
\[\text{ let e}^x \cos x = t \]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \cdot \cos x + e^x \left( - \sin x \right) = \frac{dt}{dx} \text{ Put e}^x f\left( x \right) = t\]
\[ \Rightarrow e^x \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore \int e^x \left( \cos x - \sin x \right) dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = e^x \cos x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int \cot^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int \tan^5 x\ dx\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]