Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \tan^5 \text{ x dx }\]
\[ = \int \tan^3 x \cdot \tan^2\text{ x dx }\]
\[ = \int \tan^3 x \left( \sec^2 x - 1 \right) dx\]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int \tan^3 \text{ x dx}\]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int\tan x \cdot \tan^2 \text{ x dx} \]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int\tan x \cdot \left( \sec^2 x - 1 \right) dx\]
\[ = \int \tan^3 x \cdot \sec^2 x dx - \int\tan x \cdot \sec^2\text{ x dx} + \int\tan x dx\]
\[\text{ Putting tan x = t in the Ist and IInd integral} . \]
\[ \Rightarrow \sec^2\text{ x dx} = dt\]
\[ \therefore I = \int t^3 \cdot dt - \int t \cdot dt + \int\text{ tan x dx }\]
\[ = \frac{t^4}{4} - \frac{t^2}{2} + \text{ ln} \left| \text{ sec x} \right| + C\]
\[ = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + \text{ ln} \left| \text{ sec x }\right| + C \left[ \because t = \text{ tan x} \right]\]
APPEARS IN
संबंधित प्रश्न
` = ∫1/{sin^3 x cos^ 2x} dx`
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\text{ cos x cos 2x cos 3x dx}\]