हिंदी

∫ Tan 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^5 x\ dx\]
योग

उत्तर

\[\text{ Let I }= \int \tan^5 \text{ x  dx }\]
\[ = \int \tan^3 x \cdot \tan^2\text{  x dx }\]
\[ = \int \tan^3 x \left( \sec^2 x - 1 \right) dx\]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int \tan^3 \text{ x  dx}\]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int\tan x \cdot \tan^2 \text{ x dx} \]
\[ = \int \tan^3 x \cdot \sec^2 \text{ x dx} - \int\tan x \cdot \left( \sec^2 x - 1 \right) dx\]
\[ = \int \tan^3 x \cdot \sec^2 x dx - \int\tan x \cdot \sec^2\text{ x dx} + \int\tan x dx\]
\[\text{ Putting   tan   x = t   in the  Ist  and IInd integral} . \]
\[ \Rightarrow \sec^2\text{ x dx} = dt\]
\[ \therefore I = \int t^3 \cdot dt - \int t \cdot dt + \int\text{  tan  x  dx }\]
\[ = \frac{t^4}{4} - \frac{t^2}{2} + \text{  ln} \left| \text{ sec  x} \right| + C\]
\[ = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + \text{ ln} \left| \text{  sec  x }\right| + C \left[ \because t = \text{ tan x} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 30 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x \cos^2 x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \cos^3 (3x)\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×