Advertisements
Advertisements
प्रश्न
\[\int \tan^4 x\ dx\]
योग
उत्तर
\[\text{ Let I } = \int \text{ tan}^4 \text{ x dx }\]
\[ = \int \tan^2 x \cdot \tan^2 \text{ x dx}\]
\[ = \int\left( \sec^2 x - 1 \right) \tan^2 \text{ x dx}\]
\[ = \int \sec^2 x \cdot \tan^2\text{ x dx }- \int \tan^2 \text{ x dx}\]
\[ = \int \tan^2 x \cdot \sec^2 x - \int\left( \sec^2 x - 1 \right) dx\]
\[\text{ Putting tan x } = \text{ t in the Ist integral}\]
\[ \Rightarrow \sec^2 \text{ x dx } = dt\]
\[ \therefore I = \int t^2 \cdot dt - \int\left( \sec^2 x - 1 \right) dx\]
\[ = \frac{t^3}{3} - \tan x + x + C\]
\[ = \frac{\tan^3 x}{3} - \text{ tan x + x + C }..............\left( \because t = \tan x \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \cot^4 x\ dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]