हिंदी

∫ 1 − Cos X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
योग

उत्तर

\[\int\left( \frac{1 - \cos x}{1 + \cos x} \right)dx\]
\[ = \int\frac{\left( 1 - \cos x \right)^2}{1 - \cos^2 x}dx\]
\[ = \int\frac{1 + \cos^2 x - 2\cos x}{\sin^2 x}dx\]
\[ = \int \left( \frac{1}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} - \frac{2\cos x}{\sin^2 x} \right)dx\]
\[ = \int \left( {cosec}^2 x + \cot^2 x - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int \left( {cosec}^2 x + {cosec}^2 x - 1 - 2\cot x . cosec x \right)dx\]
\[ = \int \left( 2 {cosec}^2 x - 1 - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int2 {cosec}^2 x dx - \int1 dx - \int2\cot x . \text{cosec x} dx\]
\[ = - 2\cot x - x + \text{2 cosec x} + C\]
\[ = 2\left( \text{cosec x }- \cot x \right) - x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 43 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×