हिंदी

∫ X 2 + 1 X 2 − 5 X + 6 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 
योग

उत्तर

\[\text{ Let }I\int\left( \frac{x^2 + 1}{x^2 - 5x + 6} \right)dx\]
\[\text{Dividing Numerator by Denominator}\]


\[\frac{x^2 + 1}{x^2 - 5x + 6} = 1 + \left( \frac{5x - 5}{x^2 - 5x + 6} \right) . . . . . \left( 1 \right)\]
\[\text{ Also } \frac{5x - 5}{x^2 - 5x + 6} = \frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[\text{ Let } \frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 2} + \frac{B}{x - 3}\]
\[ \Rightarrow \frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A \left( x - 3 \right) + B \left( x - 2 \right)}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 5x - 5 = A \left( x - 3 \right) + B \left( x - 2 \right)\]
\[\text{ let } x = 3\]
\[5 \times 3 - 5 = A \times 0 + B \left( 3 - 2 \right)\]
\[10 = B\]
\[\text{ let } x = 2\]
\[5 \times 2 - 5 = A \left( 2 - 3 \right) + B \times 0\]
\[A = - 5\]
\[\frac{5x - 5}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{- 5}{x - 2} + \frac{10}{x - 3} . . . . . \left( 2 \right)\]
\[\text{ from }\left( 1 \right) \text{ and }\left( 2 \right)\]
\[I = \int dx - 5\int\frac{dx}{x - 2} + 10\int\frac{dx}{x - 3}\]
\[ = x - 5 \text{ log } \left| x - 2 \right| + 10 \text{ log } \left| x - 3 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 4 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×