हिंदी

∫ X X 2 + 3 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{x^2 + 3x + 2} dx\]
योग

उत्तर

\[\int\frac{x}{x^2 + 3x + 2}dx\]
\[x = A \frac{d}{dx}\left( x^2 + 3x + 2 \right) + B\]
\[x = A \left( 2x + 3 \right) + B\]
\[x = \left( 2 Ax \right) + 3A + B\]

Comparing the Coefficients of like powers of x we get

\[2A = 1 \Rightarrow A = \frac{1}{2}\]
\[3A + B = 0\]
\[\frac{3}{2} + B = 0\]
\[B = - \frac{3}{2}\]
\[x = \frac{1}{2} \left( 2x + 3 \right) - \frac{3}{2}\]

\[Now, \int\frac{x}{x^2 + 3x + 2}dx\]
\[ = \int\left[ \frac{\frac{1}{2}\left( 2x + 3 \right) - \frac{3}{2}}{x^2 + 3x + 2} \right]dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right)dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{x^2 + 3x + 2}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right)dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + 2}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right)dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + 2}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right) dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2} \text{  log }\left| x^2 + 3x + 2 \right| - \frac{3}{2} \times \frac{1}{2 \times \frac{1}{2}} \text{ log }\left| \frac{x + \frac{3}{2} - \frac{1}{2}}{x + \frac{3}{2} + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{2} \text{ log } \left| x^2 + 3x + 2 \right| - \frac{3}{2} \text{ log }\left| \frac{x + 1}{x + 2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 1 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

`int 1/(cos x - sin x)dx`

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×