मराठी

∫ X X 2 + 3 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{x^2 + 3x + 2} dx\]
बेरीज

उत्तर

\[\int\frac{x}{x^2 + 3x + 2}dx\]
\[x = A \frac{d}{dx}\left( x^2 + 3x + 2 \right) + B\]
\[x = A \left( 2x + 3 \right) + B\]
\[x = \left( 2 Ax \right) + 3A + B\]

Comparing the Coefficients of like powers of x we get

\[2A = 1 \Rightarrow A = \frac{1}{2}\]
\[3A + B = 0\]
\[\frac{3}{2} + B = 0\]
\[B = - \frac{3}{2}\]
\[x = \frac{1}{2} \left( 2x + 3 \right) - \frac{3}{2}\]

\[Now, \int\frac{x}{x^2 + 3x + 2}dx\]
\[ = \int\left[ \frac{\frac{1}{2}\left( 2x + 3 \right) - \frac{3}{2}}{x^2 + 3x + 2} \right]dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right)dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{x^2 + 3x + 2}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right)dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + 2}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right)dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + 2}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 3 \right) dx}{x^2 + 3x + 2} - \frac{3}{2}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2} \text{  log }\left| x^2 + 3x + 2 \right| - \frac{3}{2} \times \frac{1}{2 \times \frac{1}{2}} \text{ log }\left| \frac{x + \frac{3}{2} - \frac{1}{2}}{x + \frac{3}{2} + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{2} \text{ log } \left| x^2 + 3x + 2 \right| - \frac{3}{2} \text{ log }\left| \frac{x + 1}{x + 2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 1 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×