मराठी

∫ 1 + Cot X X + Log Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
बेरीज

उत्तर

`  Note:" Here, we are considering "log x   as log_e x `
\[\text{Let I} = \int\frac{1 + \cot x}{x + \log \sin x}dx\]
\[\text{Putting}\ x + \log \ sin\ x = t\]
\[ \Rightarrow 1 + \ cot\ x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log} \left| t \right| + C\]
\[ = \text{log }\left| x + \log \sin\ x \right| + C \left[ \because t = x + \log \sin x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 44 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×