मराठी

∫ X 3 ( X − 1 ) ( X − 2 ) ( X − 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
बेरीज

उत्तर

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right)\left( x - 3 \right)}dx\]
\[ = \int\frac{x^3}{\left( x - 1 \right) \left( x^2 - 5x + 6 \right)}dx\]
\[ = \int\frac{x^3}{x^3 - 5 x^2 + 6x - x^2 + 5x - 6}dx\]
\[ = \int\frac{x^3}{x^3 - 6 x^2 + 11x - 6}dx\]
\[ \therefore \frac{x^3}{x^3 - 6 x^2 + 11x - 6} = 1 + \frac{6 x^2 + 11x + 6}{x^2 - 6 x^2 + 11x - 6}\]
\[ \Rightarrow \frac{x^3}{x^3 - 6 x^2 + 11x - 6} = 1 + \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \therefore \int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx = \int dx + \int\frac{\left( 6 x^2 - 11x + 6 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}dx ............(1)\]

\[\text{Let }\frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}\]
\[ \Rightarrow \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 6 x^2 - 11x + 6 = A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right) ..............(2)\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 4 - 22 + 6 = B \left( 2 - 1 \right) \left( 2 - 3 \right)\]
\[ \Rightarrow 8 = B \left( - 1 \right)\]
\[ \Rightarrow B = - 8\]
\[\text{Putting }x - 3 = 0\text{ or }x = 3\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 3^2 - 11 \times 3 + 6 = C \left( 3 - 1 \right) \left( 3 - 2 \right)\]
\[ \Rightarrow 27 = C \left( 2 \right) \left( 1 \right)\]
\[ \Rightarrow C = \frac{27}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 1 - 11 + 6 = A \left( 1 - 2 \right) \left( 1 - 3 \right)\]
\[ \Rightarrow 1 = A \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow A = \frac{1}{2}\]
\[ \therefore \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{8}{x - 2} + \frac{27}{2\left( x - 3 \right)}..........(3)\]
From eq. (2) and (3)
\[ \therefore \int\frac{x^3 dx}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \int dx + \frac{1}{2}\int\frac{1}{x - 1}dx - 8\int\frac{1}{x - 2}dx + \frac{27}{2}\int\frac{1}{x - 3}dx\]
\[ = x + \frac{1}{2} \ln \left| x - 1 \right| - 8 \ln \left| x - 2 \right| + \frac{27}{2} \ln \left| x - 3 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 10 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×