मराठी

∫ 1 √ x 2 − a 2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx}\]

\[\text{  Putting  x = a  sec θ }  \]

\[ \Rightarrow \text{ dx = a sec θ   tan   θ   \text{  dθ}} \]

\[ \therefore I = \int\frac{a \sec\theta \tan  θ    \text{ dθ} }{\sqrt{a^2 \sec^2 \theta - a^2}}\]

\[ = \int\frac{{a \sec\theta\tan  θ    \text{ dθ} }}{a \cdot \tan\theta}\]

\[ = \int\sec\tan  θ    \text{ dθ} \]

\[ = \text{ ln }\left| \sec\theta + \tan\theta \right| + C\]

\[ = \text{ ln} \left| \sec\theta + \sqrt{\sec^2 \theta - 1} \right| + C\]

\[ = \text{ ln }\left| \frac{x}{a} + \sqrt{\left( \frac{x}{a} \right)^2 - 1} \right| + C\]

\[ = \text{ ln} \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right| + C\]

\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| - \text{ ln a} + C\]

\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| + C'\]

\[\text{ where C'  = C }- \text{ ln  a }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 42 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×