Advertisements
Advertisements
प्रश्न
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
बेरीज
उत्तर
\[\int\left( \frac{x^4 + x {}^2 - 1}{x^2 + 1} \right)dx\]
\[ \Rightarrow \int\left( \frac{x^4 + x^2}{x^2 + 1} \right)dx - \int\frac{1}{x^2 + 1}dx\]
\[ \Rightarrow \int\frac{x^2 \left( x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx - \int\frac{1}{x^2 + 1}dx\]
\[ \Rightarrow \int x^2 dx - \int\frac{1}{x^2 + 1}dx\]
\[ \Rightarrow \frac{x^3}{3} - \tan^{- 1} \left( x \right) + C ...........\left( \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x e^x \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int \cot^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]