Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\text{ sin }\left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
` ⇒ ∫ {2 sin x cos x dx}/{\sqrt{cos^4 x - \left( 1 - \cos^2 x \right) + 2}}`
\[ \Rightarrow \int\frac{2 \sin x \cos x}{\sqrt{\cos^4 x + \cos^2 x + 1}}\]
\[\text{ Let } \cos^2 x = t\]
\[ \Rightarrow 2 \cos x \times - \text{ sin x dx } = dt\]
\[\text{ sin } \left( 2x \right) dx = - dt\]
\[Now, \int\frac{\sin \left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + 1}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{3}{4}}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t + 1} \right| + C\]
\[ = - \text{ log }\left| \cos^2 x + \frac{1}{2} + \sqrt{\cos^4 x + \cos^2 x + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` = ∫ root (3){ cos^2 x} sin x dx `
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`