मराठी

∫ Sin 2 X √ Cos 4 X − Sin 2 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
बेरीज

उत्तर

\[\int\frac{\text{ sin }\left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
` ⇒ ∫ {2 sin x cos x  dx}/{\sqrt{cos^4 x - \left( 1 - \cos^2 x \right) + 2}}`
\[ \Rightarrow \int\frac{2 \sin x \cos x}{\sqrt{\cos^4 x + \cos^2 x + 1}}\]
\[\text{ Let } \cos^2 x = t\]
\[ \Rightarrow 2 \cos x \times - \text{ sin x dx } = dt\]
\[\text{ sin } \left( 2x \right) dx = - dt\]
\[Now, \int\frac{\sin \left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + 1}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{3}{4}}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t + 1} \right| + C\]
\[ = - \text{ log }\left| \cos^2 x + \frac{1}{2} + \sqrt{\cos^4 x + \cos^2 x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.18 | Q 11 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \cos x\ dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×