Advertisements
Advertisements
प्रश्न
\[\int x^2 e^{- x} \text{ dx }\]
बेरीज
उत्तर
\[\int x^2 e^{- x} \text{ dx }\]
` " Taking x"^2" as the first function and e"^- x " as the second function ".`
\[ = x^2 \int e^{- x} dx - \int\left( \frac{d}{dx} x^2 \int e^{- x} dx \right)dx\]
\[ = - x^2 e^{- x} - \int2x\left( e^{- x} \right)\left( - 1 \right)dx\]
\[ = - x^2 e^{- x} + 2\int x e^{- x} dx\]
\[ = - x^2 e^{- x} + 2\left[ - x e^{- x} + \int e^{- x} dx \right]\]
\[ = - x^2 e^{- x} + 2\left[ - x e^{- x} - e^{- x} \right] + C\]
\[ = - e^{- x} \left[ x^2 + 2x + 2 \right] + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
` ∫ cos 3x cos 4x` dx
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int \cot^4 x\ dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]