मराठी

∫ X √ 1 + X − X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int x\sqrt{1 + x - x^2}\text{ dx}\]
\[\text{ and  let x }= A\frac{d}{dx}\left( 1 + x - x^2 \right) + B\]
\[ \Rightarrow x = A \left( - 2x + 1 \right) + B\]
\[\text{By equating the coefficients of like terms we get}, \]
\[x = \left( - 2A \right) x\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{  and   A + B = 0 }\]
\[ \Rightarrow B = \frac{1}{2}\]
\[\text{By substituting the values of A and B in eq (1) we get}, \]
\[I = \int\left[ - \frac{1}{2} \left( - 2x + 1 \right) + \frac{1}{2} \right] \sqrt{1 + x - x^2} \text{ dx }\]
\[ = - \frac{1}{2}\int\left( - 2x + 1 \right) \sqrt{1 + x - x^2}dx + \frac{1}{2} \sqrt{1 + x - x^2}\text{ dx }\]
\[\text{ Putting  1 + x - x^2 = t}\]
\[ \Rightarrow \left( - 2x + 1 \right) \text{ dx }= dt\]
\[ \therefore I = - \frac{1}{2}\int\sqrt{t} \cdot dt + \frac{1}{2}\int\sqrt{1 + x - x^2} \text{ dx }\]
\[ = - \frac{1}{2}\int\sqrt{t} \text{ dt} + \frac{1}{2}\int\sqrt{1 - \left( x^2 - x \right)} \text{ dx }\]
\[ = - \frac{1}{2}\int t^\frac{1}{2} \cdot dt + \frac{1}{2}\int\sqrt{1 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}\text{ dx }\]
\[ = - \frac{1}{2}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \frac{1}{2}\int\sqrt{1 - \left( x - \frac{1}{2} \right)^2 + \frac{1}{4}}\text{ dx }\]
\[ = - \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} + \frac{1}{2}\int\sqrt{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}dx\]
\[ = - \frac{1}{3} t^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} + \frac{\left( \frac{\sqrt{5}}{2} \right)^2}{2} \text{ sin}^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{5}}{2}} \right) \right] + C ......................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = - \frac{1}{3} \left( 1 + x - x^2 \right)^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x - 1}{4} \right) \sqrt{1 + x - x^2} + \frac{5}{8} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) \right] + C\]
\[ = \frac{- \left( 1 + x - x^2 \right)\sqrt{1 + x - x^2}}{3} + \frac{\left( 2x - 1 \right)}{8} \sqrt{1 + x - x^2} + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{- \left( 1 + x - x^2 \right)}{3} + \frac{2x - 1}{8} \right] + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{- 8 - 8x + 8 x^2 + 6x - 3}{24} \right] + \frac{5}{16}\text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{8 x^2 - 2x - 11}{24} \right] + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 89 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

` ∫   cos  3x   cos  4x` dx  

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×