मराठी

∫ X 3 Sin − 1 X 2 √ 1 − X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{x^3 \times \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting } \sin^{- 1} x^2 = t \]
\[ \Rightarrow x^2 = \sin t\]
\[ \Rightarrow \frac{1 \times 2x  \text{ dx }}{\sqrt{1 - \left( x^2 \right)^2}} = dt\]
\[ \Rightarrow \frac{x    \text{ dx }}{\sqrt{1 - x^4}} = \frac{dt}{2}\]
\[ \therefore I = \int x^2 . \frac{\sin^{- 1} x^2}{\sqrt{1 - x^4}} . \text{ x   dx }\]
\[ = \int \left( \sin t \right) . t . \frac{dt}{2}\]
\[ = \frac{1}{2}\int t_I . \sin_{II} t    \text{ dt }\]
\[ = \frac{1}{2}\left[ t\int\text{ sin  t  dt} - \int\left\{ \frac{d}{dt}\left( t \right)\int\text{ sin  t  dt } \right\}dt \right]\]
\[ = \frac{1}{2} \left[ t . \left( - \cos t \right) - \int 1 . \left( - \cos t \right) dt \right]\]
\[ = \frac{1}{2}\left[ - t \cos t + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - t\sqrt{1 - \sin^2 t} + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - \sin^{- 1} \left( x^2 \right) \sqrt{1 - x^4} + x^2 \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 59 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×