Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{1 + \cos x} dx\]
बेरीज
उत्तर
\[\int\frac{\cos x}{1 + \cos x}dx\]
\[ = \int\frac{\cos x\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx\]
\[ = \int\frac{\cos x - \cos^2 x}{1 - \cos^2 x}dx\]
\[ = \int\frac{\cos x - \cos^2 x}{\sin^2 x}dx\]
\[ = \int\frac{\cos x}{\sin^2 x} - \frac{\cos^2 x}{\sin^2 x}dx\]
\[ = \int\left( \text{cot x cosec x} - \cot^2 x \right)dx\]
\[ = \int\left( \text{cot x cosec x} - cosec^2 x + 1 \right)dx\]
\[ = \int\text{cot x cosec x dx} - \ ∫ co \sec^2 x dx + \int1dx\]
\[ =\text{ - cosec x }+ \cot x + x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]