मराठी

∫ ( 2 X + 3 X ) 2 6 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 
बेरीज

उत्तर

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x}dx\]
\[ = \int\left[ \frac{\left( 2^x \right)^2 + \left( 3^x \right)^2 + 2 \cdot 2^x \cdot 3^x}{6^x} \right]dx\]
\[ = \int\left( \frac{\left( 2^x \right)^2}{2^x \cdot 3^x} + \frac{\left( 3^x \right)^2}{2^x \cdot 3^x} + \frac{2 \cdot 2^x \cdot 3^x}{2^x \cdot 3^x} \right)dx\]
\[ \Rightarrow \int\left[ \left( \frac{2}{3} \right)^x + \left( \frac{3}{2} \right)^x + 2 \right]dx\]
\[ \Rightarrow \frac{\left( \frac{2}{3} \right)^x}{\text{ ln }\left( \frac{2}{3} \right)} + \frac{\left( \frac{3}{2} \right)^x}{\text{ln } \frac{3}{2}} + 2x + C ...........\left( \because \int a^x dx = \frac{a^x}{\text{ ln } a} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 6 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×