Advertisements
Advertisements
प्रश्न
\[\int \left( e^x + 1 \right)^2 e^x dx\]
बेरीज
उत्तर
\[\int \left( e^x + 1 \right)^2 e^x \text{dx} \]
\[ = \int\left( e^{2x} + 2 e^x + 1 \right) e^x dx\]
\[ = \int\left( e^{3x} + 2 e^{2x} + e^x \right) dx\]
\[ = \left[ \frac{e^{3x}}{3} + \frac{2 e^{2x}}{2} + e^x \right] + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
` ∫ sin 4x cos 7x dx `
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int \tan^5 x\ dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]