मराठी

∫ X ( X − 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{x dx}{\left( x - 1 \right)^2 \left( x + 2 \right)}\]

\[\text{Let }\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right)^2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{A \left( x - 1 \right) \left( x + 2 \right) + B \left( x + 2 \right) + C \left( x - 1 \right)^2}{\left( x - 1 \right)^2 \left( x + 2 \right)}\]

\[ \Rightarrow x = A \left( x^2 + 2x - x - 2 \right) + B \left( x + 2 \right) + C \left( x^2 - 2x + 1 \right)\]

\[ \Rightarrow x = A \left( x^2 + x - 2 \right) + B \left( x + 2 \right) + C \left( x^2 - 2x + 1 \right)\]

\[ \Rightarrow x = \left( A + C \right) x^2 + \left( A + B - 2C \right) x + \left( - 2A + 2B + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 0 .................(1)\]

\[A + B - 2C = 1 ..................(2)\]

\[ - 2A + 2B + C = 0 .....................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{2}{9}, B = \frac{1}{3}\text{ and }C = - \frac{2}{9}\]

\[ \therefore \frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{2}{9 \left( x - 1 \right)} + \frac{1}{3 \left( x - 1 \right)^2} - \frac{2}{9 \left( x + 2 \right)}\]

\[ \Rightarrow I = \frac{2}{9}\int\frac{dx}{x - 1} + \frac{1}{3}\int\frac{dx}{\left( x - 1 \right)^2} - \frac{2}{9}\int\frac{dx}{x + 2}\]

\[ = \frac{2}{9} \log \left| x - 1 \right| + \frac{1}{3} \times \left( \frac{- 1}{x - 1} \right) - \frac{2}{9} \log \left| x + 2 \right| + C\]

\[ = \frac{2}{9}\log \left| \frac{x - 1}{x + 2} \right| - \frac{1}{3 \left( x - 1 \right)} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 30 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

` ∫      tan^5    x   dx `


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \cos^3 (3x)\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×