मराठी

∫ Tan 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫      tan^5    x   dx `

बेरीज

उत्तर

∫ tan5 x dx
= ∫ tan4 x. tan x dx
= ∫(sec2 x – 1)2 . tan x dx

= ​​∫ (sec4 x – 2 sec2 x + 1) tan x dx
= ∫ tan x . sec4 x dx – 2 ​∫ sec2 x . tan x dx+  ​∫ ta
n x dx

= ∫ sec2 x. sec2 x . tan x dx – 2 ​∫ tan x sec2 x dx + ​∫ tan x dx
= ∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx + ​∫ tan x dx

Let I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
And I2=∫ tan x dx

∫ tan5 x dx=I1 + I2
Now, I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
Let tan x = t

⇒ sec2x dx = dt
I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
∫ (1 + t2) . t. dt – 2 ​∫ t. dt

∫ (t + t3) dt – 2 ​∫ t dt 

\[\frac{t^2}{2} + \frac{t^4}{4} - \frac{2 t^2}{2} + C_1 \]

\[ = \frac{t^4}{4} - \frac{t^2}{2} + C_1 \]

\[ = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + C_1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.11 | Q 5 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×