मराठी

∫ Tan − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \sqrt{x}\ dx\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \tan^{- 1} \sqrt{x}\text{  dx }\]

\[\text{ Putting} \sqrt{x} = \tan \theta\]

\[ \Rightarrow x = \tan^2 \theta\]

\[ \Rightarrow dx =\text{  2   tan  θ  } \sec^2 \text{ θ   dθ }\]

\[ \therefore I = \int \left[ \tan^{- 1} \left( \tan \theta \right)\text{  2   tan  θ } \sec^\text{ 2 }\theta \right] d\theta\]

\[ = 2 \int \theta_i  \text{ tan  θ  sec}^2_{ii}   \text{ θ   dθ }\]

\[ = 2\left[ \theta \times \frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \text{ θ   dθ }}{2} \right] ................\left( \because \int \tan \theta \sec^2 \text{ θ   dθ } = \frac{\tan^2 \theta}{2} \right)\]

\[ = 2\left[ \theta\frac{\tan^2 \theta}{2} - \frac{1}{2}\int\left( \sec^2 \theta - 1 \right)d\theta \right]\]

\[ = \theta \tan^2 \theta - \frac{2 \times \tan \theta}{2} + \frac{2 \times \theta}{2} + C\]

\[ = \tan^{- 1} \sqrt{x} \times x - \sqrt{x} + \tan^{- 1} \sqrt{x} + C\]

\[ = \left( x + 1 \right) \tan^{- 1} \sqrt{x} - \sqrt{x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 109 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×