Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \tan^\frac{3}{2} x \cdot \sec^2 \text{x dx}\]
\[Let \tan x = t\]
\[ \Rightarrow \sec^2 x = \frac{dt}{dx}\]
\[ \Rightarrow \sec^2 \text{x dx} = dt\]
\[Now, \int \tan^\frac{3}{2} x \cdot \sec^2 \text{x dx} \]
\[ = \int t^\frac{3}{2} dt\]
` = [t^{3/2 +1}/{3/2+1}] + C`
\[ = \frac{2}{5} t^\frac{5}{2} + C\]
\[ = \frac{2}{5} \tan^\frac{5}{2} x + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
Evaluate the following integral:
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Find: `int (3x +5)/(x^2+3x-18)dx.`