मराठी

∫ 1 2 − 3 Cos 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]

बेरीज

उत्तर

`int 1/[ 2 - 3cos2x] dx`

As `cos 2x = 2cos^x - 1`

So `int 1/[ 2 - 3cos2x] dx = int 1/[2 - 3( 2cos^x - 1) ]`

And multiply and divide by sec2x
Then we have `int  sec^2x/[5sec^2x - 6]` dx

= `int   (sec^2x)/[5( 1 + tan^2x) - 6]`

=  `int (sec^2x dx)/( 5tan^2x - 1)`

Let tan x = t, then sec2x dx = dt

Hence `int [sec^2x]/[ 5tan^2x - 1]` 

= `int dt/[5t^2 - 1]`

= `1/5 int  dt/[t^2 - (1/sqrt5)^2]`

= `1/5 log |[ t - 1/sqrt5 ]/[ t + 1/sqrt5 ]|`

= `1/5 log |[ tan x - 1/sqrt5]/[ tan x + 1/sqrt5 ]| + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 62 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×