मराठी

∫ X 4 ( X − 1 ) ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{x^4 dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int \left[ \frac{x^4 - 1 + 1}{\left( x - 1 \right) \left( x^2 + 1 \right)} \right]dx\]
\[ = \int \frac{\left( x^4 - 1 \right)dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\frac{\left( x^2 - 1 \right) \left( x^2 + 1 \right) dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int \frac{\left( x - 1 \right) \left( x + 1 \right)dx}{\left( x - 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\left( x + 1 \right)dx + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} ................\left( 1 \right)\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right) \left( x - 1 \right)}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A x^2 + A + B x^2 - Bx + Cx - C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( C - B \right)x + A - C\]
\[\text{Equating coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[C - B = 0 . . . . . \left( 2 \right)\]
\[A - C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[B = - \frac{1}{2}, A = \frac{1}{2}, C = - \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( x - 1 \right)} + \frac{- \frac{x}{2} - \frac{1}{2}}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{1}{2}\left( \frac{x}{x^2 + 1} \right) - \frac{1}{2\left( x^2 + 1 \right)} ............. \left( 2 \right)\]
\[\text{From (1) and (2)}\]
\[I = \int\left( x + 1 \right)dx + \frac{1}{2}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \int\left( x + 1 \right)dx + \frac{1}{2}\int\frac{dx}{x - 1} - \frac{1}{4}\int\frac{dt}{t} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{x^2}{2} + x + \frac{1}{2}\log \left| x - 1 \right| - \frac{1}{4}\log \left| t \right| - \frac{1}{2} \tan^{- 1} x + C\]
\[ = \frac{x^2}{2} + x + \frac{1}{2}\log \left| x - 1 \right| - \frac{1}{4}\log \left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} \left( x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 65 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x \cos x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cot^5 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×