Advertisements
Advertisements
प्रश्न
` ∫ {1}/{a^2 x^2- b^2}dx`
बेरीज
उत्तर
\[\int\frac{dx}{a^2 x^2 - b^2} \]
\[ = \frac{1}{a^2}\int\frac{dx}{x^2 - \left( \frac{b}{a} \right)^2}\]
\[ = \frac{1}{a^2} \times \frac{1}{2\frac{b}{a}} \log \left| \frac{x - \frac{b}{a}}{x + \frac{b}{a}} \right| + C \left[ \therefore \int\frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \right]\]
` = \text{1}/{2ab} \text{ log }\| \frac{ax - b}{ax + b}| + C `
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
` ∫ sec^6 x tan x dx `
\[\int \sin^5 x \cos x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]