Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
बेरीज
उत्तर
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2}dx\]
\[\text{Let} \tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[Now, \int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2}dx\]
\[ = \int\text{sin t dt} \]
\[ = - \cos \left( t \right) + C\]
\[ = - \cos \left( \tan^{- 1} x \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x \cos^2 x\ dx\]
\[\int2 x^3 e^{x^2} dx\]
` ∫ x tan ^2 x dx
\[\int x \sin^3 x\ dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int \sec^6 x\ dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]