मराठी

∫ √ X 1 − X D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to

पर्याय

  • \[\sin^{- 1} \sqrt{x} + C\]
  • \[\sin^{- 1} \left\{ \sqrt{x} - \sqrt{x \left( 1 - x \right)} \right\} + C\]
  • \[\sin^{- 1} \left\{ \sqrt{x \left( 1 - x \right)} \right\} + C\]
  • \[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
MCQ

उत्तर

\[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
 
 
\[\text{Let }I = \int\sqrt{\frac{x}{1 - x}}dx\]

\[\text{Putting }\sqrt{x} = \sin \theta\]

\[ \Rightarrow x = \sin^2 \theta\]

\[ \Rightarrow dx = 2 \sin \theta \cos \theta d\theta\]

\[ \Rightarrow dx = \sin \left( 2\theta \right) d\theta\]

\[ \therefore I = \int\sqrt{\frac{\sin^2 \theta}{1 - \sin^2 \theta}} \times \sin \left( 2\theta \right) \cdot d\theta\]

\[ = \int\frac{\sin \theta}{\cos \theta} \times 2 \sin \theta \cdot \cos \theta d\theta\]

\[ = \int2 \sin^2 \theta \cdot d\theta\]

\[ = \int\left( 1 - \cos 2\theta \right)d\theta\]

\[ = \theta - \frac{\sin \left( 2\theta \right)}{2} + C\]

\[ = \theta - \frac{2 \sin \theta \cos \theta}{2} + C \]

\[ = \theta - \sin \theta \sqrt{1 - \sin^2 \theta} + C\]

\[ = \sin^{- 1} \sqrt{x} - \sqrt{x} \sqrt{1 - x} + C ...........\left( \because \theta = \sin^{- 1} \sqrt{x} \right)\]

\[ = \sin^{- 1} \sqrt{x} - \sqrt{x\left( 1 - x \right)} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 26 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 + \cos 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cos^7 x \text{ dx  } \]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×