मराठी

∫ 1 − 3 X 3 X 2 + 4 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]
बेरीज

उत्तर

\[\int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[1 - 3x = A\frac{d}{dx}\left( 3 x^2 + 4x + 2 \right) + B\]
\[1 - 3x = A \left( 6x + 4 \right) + B\]
\[1 - 3x = \left( 6 A \right) x + \text{ 4 A }+ B\]

Comparing the Coefficients of like powers of x

\[\text{ 6 A }= - 3\]
\[A = \frac{- 1}{2}\]
\[\text{ 4 A }+ B = 1\]
\[4 \times \frac{- 1}{2} + B = 1\]
\[B = 3\]

\[1 - 3x = - \frac{1}{2}\left( 6x + 4 \right) + 3\]
\[Now, \int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[ = \int\left( \frac{\frac{- 1}{2}\left( 6x + 4 \right) + 3}{3 x^2 + 4x + 2} \right)dx\]
\[ = - \frac{1}{2}\int\frac{\left( 6x + 4 \right) dx}{3 x^2 + 4x + 2} + 3\int\frac{dx}{3 x^2 + 4x + 2}\]
\[ = - \frac{1}{2} I_1 + 3 I_2 \left( \text{ say} \right) . . . \left( 1 \right)\]
\[\text{ where}\]
\[ I_1 = \int\frac{6x + 4}{3 x^2 + 4x + 2} \text{ and }I_2 = \int\frac{dx}{3 x^2 + 4x + 2}\]
\[ I_1 = \int\left( \frac{6x + 4}{3 x^2 + 4x + 2} \right)dx\]
\[\text{ let }3 x^2 + 4x + 2 = t\]
\[ \Rightarrow \left( 6x + 4 \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C_1 \]
\[ = \text{ log }\left| 3 x^2 + 4x + 2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{3 x^2 + 4x + 2}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{x^2 + \frac{4}{3}x + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{x^2 + \frac{4x}{x} + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x + \frac{2}{3} \right)^2 + \frac{2}{9}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x + \frac{2}{3} \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}\]
\[ I_2 = \frac{1}{3} \times \frac{3}{\sqrt{2}} \tan^{- 1} \left( \frac{x + \frac{2}{3}}{\frac{\sqrt{2}}{3}} \right) + C_2 \]
\[ I_2 = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C_2 . . . \left( 3 \right)\]
\[\text{ from } \left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[ = - \frac{1}{2} \text{ log }\left| 3 x^2 + 4x + 2 \right| + \frac{3 \times 1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C_1 + C_2 \]
\[ = - \frac{1}{2} \text{ log }\left| 3 x^2 + 4x + 2 \right| + \frac{3}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C \left( \text{ Where C } = C_1 + C_2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 7 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\cos\sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×