मराठी

∫ 1 1 + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{1 + 3 \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\sec^2 x + 3 \tan^2 x}dx\]


\[ = \int \frac{\sec^2 x}{1 + \tan^2 x + 3 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + 4 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + \left( 2 \tan x \right)^2}dx\]
\[\text{ Let 2 }\tan x = t\]
\[ \Rightarrow 2 \sec^2 x \text{ dx } = dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int \frac{dt}{1 + t^2}\]
\[ = \frac{1}{2} \text{ tan  }^{- 1} \left( t \right) + C\]
\[ = \frac{1}{2} \text{ tan }^{- 1} \left( 2 \tan x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 5 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×