मराठी

∫ Sin − 1 √ X a + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\text{ Putting x }= a \tan^2 \theta\]

\[ \Rightarrow \sqrt{\frac{x}{a}} = \tan \theta\]

\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \text{ θ   dθ  }\]

\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \right) \sec^2 \text{ θ   dθ  }\]

\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]

\[ = 2a \int \left[ \sin^{- 1} \left( \sin \theta \right)\tan \theta \sec^2 \theta \right] d\theta\]

\[= 2a \int \theta_I \tan \theta_{II} \sec^2 \text{ θ   dθ  }\]

\[ = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]

\[ = 2a \left[ \frac{\theta . \tan^2 \theta}{2} - \frac{1}{2}\int\left( se c^2 \theta - 1 \right)d\theta \right]\]

\[ = \text{ a }\theta \tan^2 \theta - a \tan \theta + a\theta + C\]

\[ = a\left( \frac{x}{a} \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - a\sqrt{\frac{x}{a}} + a \tan^{- 1} \sqrt{\frac{x}{a}} + C\]

\[ = x \tan^{- 1} \sqrt{\frac{x}{a}} - \sqrt{ax} + a \tan^{- 1} \sqrt{\frac{x}{a}} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 58 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×