Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\frac{e^x}{x}\left[ x \left( \log x \right)^2 + 2\log x \right]dx\]
\[ = \int e^x \left[ \left( \log x \right)^2 + \frac{2\log x}{x} \right]dx\]
\[Here, f(x) = \left( \log x \right)^2 \]
\[ \Rightarrow f'(x) = \frac{2\log x}{x}\]
\[\text{ put e}^x f(x) = t\]
\[ \Rightarrow e^x \left( \log x \right)^2 = t\]
\[\text{ Diff both sides w . r . t x }\]
\[\left[ e^x \left( \log x \right)^2 + e^x \frac{2\log x}{x} \right]dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \left( \log x \right)^2 + C\]
APPEARS IN
संबंधित प्रश्न
` = ∫ root (3){ cos^2 x} sin x dx `
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]