मराठी

∫ X 2 + X + 1 ( X + 1 ) 2 ( X + 2 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\text{ Let }\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2} . . . . . \left( 1 \right)\]
\[ \Rightarrow x^2 + x + 1 = A\left( x + 1 \right)\left( x + 2 \right) + B\left( x + 2 \right) + C \left( x + 1 \right)^2 . . . . . \left( 2 \right)\]
\[ \text{ Putting x = - 1 in }\left( 2 \right), \text{we get}\]
\[ B = 1\]
\[ \text{ Putting x = - 2 in }\left( 2 \right), \text{we get}\]
\[ C = 3\]
\[ \text{ Putting x = 0 in} \left( 2 \right), \text{we get}\]
\[1 = 2A + 2B + C\]
\[ \Rightarrow 1 = 2A + 2 + 3\]
\[ \Rightarrow - 4 = 2A\]
\[ \Rightarrow A = - 2\]
\[\text{Now}, \left( 1 \right) \text{becomes}\]
\[\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2}\]
\[\text{Therefore, integral becomes}\]
\[I = \int\left[ \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2} \right]dx\]
\[ = - 2 \text{ log} \left| x + 1 \right| - \frac{1}{\left( x + 1 \right)} + 3 \text{ log} \left| x + 2 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 128 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \log_{10} x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×