Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
बेरीज
उत्तर
\[\int\frac{dx}{\sqrt{16 - 6x - x^2}}\]
\[ = \int\frac{dx}{\sqrt{16 - \left( x^2 + 6x \right)}}\]
\[ = \int\frac{dx}{\sqrt{16 - \left( x^2 + 6x + 3^2 - 3^2 \right)}}\]
\[ = \int\frac{dx}{\sqrt{16 + 9 - \left( x + 3 \right)^2}}\]
\[ = \int\frac{dx}{\sqrt{5^2 - \left( x + 3 \right)^2}}\]
\[ = \sin^{- 1} \left( \frac{x + 3}{5} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
` ∫ cos mx cos nx dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
`int 1/(cos x - sin x)dx`
\[\int x \cos^2 x\ dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]