मराठी

∫ E X ( Sin 4 X − 4 1 − Cos 4 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{\sin4x - 4}{1 - \cos4x} \right]dx\]

\[ = \int e^x \left[ \frac{2\sin2x \cos2x}{2 \sin^2 (2x)} - \frac{4}{2 \sin^2 2x} \right]dx\]

\[ = \int e^x \left[ \cot(2x) - \text{ 2
}{cosec}^2 (2x) \right]dx\]

\[\text{ Here,} f(x) = \text
{ cot } (2x)\]

\[ \Rightarrow f'(x) = - \text{ 2 }{cosec}^2 (2x)\]

\[\text{ Put e}^x f(x) = t\]

\[\text{ let e }^x \text{ cot }( 2x) = t\]

\[\text{ Diff  both  sides w . r . t x}\]

\[ e^x \text{ cot (2x) } + e^x \times \left[ - \text{ 2  } {cosec}^\text{ 2 }(2x) \right] = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \cot(2x) -\text{  2 } {cosec}^\text{ 2 }(2x) \right]dx = dt\]

\[ \therefore \int e^x \left[ \cot 2x - \text{ 2 }{cosec}^2 \text{ 2x } \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = e^x \cot\left( \text{ 2x } \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 11 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×