मराठी

∫ E 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^{2x}}{1 + e^x} dx\]
बेरीज

उत्तर

\[\int\frac{e^{2x} dx}{1 + e^x}\]
\[ \Rightarrow \int\frac{e^x . e^x}{1 + e^x}dx\]
\[\text{Let 1 }+ e^x = t \]
\[ \Rightarrow e^x = t - 1\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x . e^x}{1 + e^x}dx\]
\[ = \int \frac{\left( t - 1 \right) . dt}{t}\]
\[ = \left( 1 - \frac{1}{t} \right)dt\]
\[ = t - \text{log }\left| t \right| + C\]
\[ = \left( 1 + e^x \right) - \log \left( 1 + e^x \right) + C\]
\[\text{Let C }+ 1 = C'\]
\[ = e^x - \text{log} \left( \text{1 + e}^x \right) + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 60 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫      tan^5    x   dx `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \text{ dx }\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×