Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{\sqrt{3 x^2 + 5x + 7}}\]
\[ = \int\frac{dx}{\sqrt{3\left( x^2 + \frac{5}{3}x + \frac{7}{3} \right)}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{x^2 + \frac{5}{3}x + \left( \frac{5}{6} \right)^2 - \left( \frac{5}{6} \right)^2 + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 - \frac{25}{36} + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{- 25 + 84}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \left( \frac{\sqrt{59}}{36} \right)^2}}\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}} \right| + C\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{3}x + \frac{7}{3}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .