मराठी

∫ 1 √ 3 X 2 + 5 X + 7 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sqrt{3 x^2 + 5x + 7}}\]
\[ = \int\frac{dx}{\sqrt{3\left( x^2 + \frac{5}{3}x + \frac{7}{3} \right)}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{x^2 + \frac{5}{3}x + \left( \frac{5}{6} \right)^2 - \left( \frac{5}{6} \right)^2 + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 - \frac{25}{36} + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{- 25 + 84}{36}}}\]


\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \left( \frac{\sqrt{59}}{36} \right)^2}}\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}} \right| + C\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{3}x + \frac{7}{3}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.17 | Q 4 | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  sec^6   x  tan    x   dx `

\[\int \sin^3 x \cos^6 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cot^4 x\ dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×