मराठी

∫ X 3 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^3 \tan^{- 1}\text{  x dx }\]
बेरीज

उत्तर

\[\int {x^3}_{II} . \tan^{- 1}_I \text{ x dx }\]
\[ = \tan^{- 1} x \int x^3 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^3 dx \right\}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \int\frac{1}{1 + x^2} \times \frac{x^4}{4}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \frac{x^4 dx}{x^2 + 1}\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( \frac{x^4 - 1 + 1}{x^2 + 1} \right)dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( \frac{x^4 - 1}{x^2 + 1} \right)dx - \frac{1}{4}\int \frac{1}{x^2 + 1}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int\frac{\left( x^2 - 1 \right) \left( x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx - \frac{1}{4}\int \frac{1}{x^2 + 1}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( x^2 - 1 \right)dx - \frac{1}{4} \tan^{- 1} x + C\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\left( \frac{x^3}{3} - x \right) - \frac{1}{4} \tan^{- 1} x + C\]
\[ = \left( \frac{x^4 - 1}{4} \right) \tan^{- 1} x - \frac{1}{12}\left( x^3 - 3x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 49 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \log_{10} x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×