मराठी

∫ ( X + 1 ) E X Log ( X E X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
बेरीज

उत्तर

\[\int\left( x + 1 \right)e^x  . \text{ log } \left( x \text{ e}^x \right) dx\]
\[\text{ Let x e}^x = t\]
\[ \Rightarrow \left( x . e^x + 1 . e^x \right)dx = dt\]
\[ \therefore \int \left( x + 1 \right) e^x . \text{ log } \left( x \text{ e }^x \right) dx = \int 1_{II} . \text{ log }_I\left( t \right) dt\]
\[ = \text{ log  t }\int1\text{  dt } - \int\left\{ \frac{d}{dt}\left( \text{ log  t } \right) - \int1  \text{ dt }\right\}dt\]
\[ = \text{ log }\left( t \right) \times t - \int\frac{1}{t} \times \text{ t  dt }\]
\[ = \text{ t  log }\left( t \right) - t + C . . . (1)\]
\[\text{Substituting the value of t in eq}     \text{ (1) }\]
\[ \Rightarrow \int \left( x + 1 \right) e^x . \text{ log } \left( x \text{ e}^x \right) dx = \left( \text{ x e}^x \right) . \text{ log }\left( x \text{ e}^x \right) - \text{ x e }^x + C\]
\[ = \text{ x e}^x \left\{ \text{ log }\left( \text{ x e}^x \right) - 1 \right\} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 34 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×