English

∫ ( X + 1 ) E X Log ( X E X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
Sum

Solution

\[\int\left( x + 1 \right)e^x  . \text{ log } \left( x \text{ e}^x \right) dx\]
\[\text{ Let x e}^x = t\]
\[ \Rightarrow \left( x . e^x + 1 . e^x \right)dx = dt\]
\[ \therefore \int \left( x + 1 \right) e^x . \text{ log } \left( x \text{ e }^x \right) dx = \int 1_{II} . \text{ log }_I\left( t \right) dt\]
\[ = \text{ log  t }\int1\text{  dt } - \int\left\{ \frac{d}{dt}\left( \text{ log  t } \right) - \int1  \text{ dt }\right\}dt\]
\[ = \text{ log }\left( t \right) \times t - \int\frac{1}{t} \times \text{ t  dt }\]
\[ = \text{ t  log }\left( t \right) - t + C . . . (1)\]
\[\text{Substituting the value of t in eq}     \text{ (1) }\]
\[ \Rightarrow \int \left( x + 1 \right) e^x . \text{ log } \left( x \text{ e}^x \right) dx = \left( \text{ x e}^x \right) . \text{ log }\left( x \text{ e}^x \right) - \text{ x e }^x + C\]
\[ = \text{ x e}^x \left\{ \text{ log }\left( \text{ x e}^x \right) - 1 \right\} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 34 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×