Advertisements
Advertisements
Question
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
Sum
Solution
\[\int\frac{\sin \left( \log x \right)}{x}dx\]
\[\text{Let }\log x = t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[Now, \int\frac{\sin \left( \log x \right)}{x}dx\]
\[ = \int\text{sin }\left( \text{t }\right) dt\]
\[ = - \text{cos} \left( \text{t }\right) + C\]
\[ = - \text{cos} \left( \text{log x} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
`∫ cos ^4 2x dx `
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]