English

∫ 1 1 − 2 Sin X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{1}{1 - 2 \sin x} dx \]

\[\text{ Putting sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]

\[ \therefore I = \int\frac{1}{1 - 2 \left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{1 + \tan^2 \frac{x}{2} - 4 \tan \frac{x}{2}} dx\]

\[ = \int\frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} - 4 \tan \frac{x}{2}}dx\]

\[\text{ Putting   tan }\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) dx = dt\]

\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \cdot dx = 2dt\]

\[ \therefore I = \int\frac{2}{t^2 - 4t + 1}dt\]

\[ = 2\int\frac{1}{t^2 - 4t + 4 - 4 + 1}dt\]

\[ = 2\int\frac{1}{\left( t - 2 \right)^2 - \left( \sqrt{3} \right)^2}dt\]

\[ = 2 \times \frac{1}{2\sqrt{3}} \text{ ln }\left| \frac{t - 2 - \sqrt{3}}{t - 2 + \sqrt{3}} \right| + C .......................\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{\tan\frac{x}{2} - 2 - \sqrt{3}}{\tan\frac{x}{2} - 2 + \sqrt{3}} \right| + C .........................\left[ \because t = \tan \frac{x}{2} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 65 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \text{nx dx}\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×