Advertisements
Advertisements
Question
` ∫ tan^3 x sec^2 x dx `
Sum
Solution
` ∫ tan^3 x sec^2 x dx `
Let tan x = t
⇒ sec2 x dx = dt
Now ,` ∫ tan^3 x sec^2 x dx `
`= ∫ t^3.dt `
\[= \frac{t^4}{4} + C\]
`= ∫ t^3.dt `
\[= \frac{t^4}{4} + C\]
\[ = \frac{\tan^4 x}{4} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int x \cos x\ dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]