English

∫ 3 ( 1 − X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{3 dx}{\left( 1 - x \right) \left( 1 + x^2 \right)}\]
\[ = 3\int\frac{dx}{\left( 1 - x \right) \left( 1 + x^2 \right)}\]
\[\text{Let }\frac{1}{\left( 1 - x \right) \left( 1 + x^2 \right)} = \frac{A}{1 - x} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right) \left( 1 - x \right)}{\left( 1 - x \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A x^2 + A + Bx - B x^2 + C - Cx\]
\[ \Rightarrow 1 = \left( A - B \right) x^2 + \left( B - C \right)x + A + C\]
\[\text{Equating coefficients of like terms} . \]
\[A - B = 0 . . . . . \left( 1 \right)\]
\[B - C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[A = \frac{1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( 1 - x \right)} + \frac{\frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]
\[\int \frac{3 dx}{\left( 1 - x \right) \left( x^2 + 1 \right)} = \frac{3}{2}\int\frac{dx}{1 - x} + \frac{3}{2}\int\frac{x dx}{x^2 + 1} + \frac{3}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \frac{3}{2}\int\frac{dx}{1 - x} + \frac{3}{4}\int\frac{dt}{t} + \frac{3}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{3}{2}\frac{\log \left| 1 - x \right|}{- 1} + \frac{3}{4}\log \left| t \right| + \frac{3}{2} \times \tan^{- 1} x + C\]
\[ = \frac{- 3}{2}\log \left| 1 - x \right| + \frac{3}{4}\log \left| 1 + x^2 \right| + \frac{3}{2} \tan^{- 1} x + C\]
\[ = \frac{- 3}{4} \times 2 \log \left| 1 - x \right| + \frac{3}{4}\log \left| 1 + x^2 \right| + \frac{3}{4}\left( 2 \tan^{- 1} x \right) + C\]
\[ = \frac{3}{4}\left[ \log \left| 1 + x^2 \right| - \log \left| \left( 1 - x \right)^2 \right| \right] + \frac{3}{4}\left( 2 \tan^{- 1} x \right) + C\]
\[ = \frac{3}{4}\left[ \log \left| \frac{1 + x^2}{\left( 1 - x \right)^2} \right| + 2 \tan^{- 1} \left( x \right) \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 48 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×