Advertisements
Advertisements
Question
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
Sum
Solution
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\text{Let }\sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[Now, \int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx \]
\[ = \int t^3 dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x \right)^4}{4} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int \cot^5 x \text{ dx }\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]