English

∫ ( Sin − 1 X ) 3 √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 

Sum

Solution

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\text{Let }\sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[Now, \int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx \]
\[ = \int t^3 dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x \right)^4}{4} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 57 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×