English

∫ √ 3 − 2 X − 2 X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
Sum

Solution

\[\text{ Let I } = \int\sqrt{3 - 2x - 2 x^2}\text{ dx}\]
\[ = \int\sqrt{3 - \left( 2 x^2 + 2x \right)}\text{ dx}\]
\[ = \int\sqrt{3 - 2 \left( x^2 + x \right)}\text{ dx}\]
\[ = \int\sqrt{3 - 2 \left( x^2 + x + \frac{1}{4} - \frac{1}{4} \right)}\text{ dx}\]
\[ = \int\sqrt{3 - 2 \left( x + \frac{1}{2} \right)^2 + \frac{1}{2}}\text{ dx}\]
\[ = \int\sqrt{\frac{7}{2} - 2 \left( x + \frac{1}{2} \right)^2}\text{ dx}\]
\[ = \sqrt{2}\int\sqrt{\frac{7}{4} - \left( x + \frac{1}{2} \right)^2}\text{ dx}\]
\[ = \sqrt{2}\int\sqrt{\left( \frac{\sqrt{7}}{2} \right)^2 - \left( x + \frac{1}{2} \right)^2}\text{ dx}\]
\[ = \sqrt{2} \times \left( \frac{x + \frac{1}{2}}{2} \right) \sqrt{\left( \frac{\sqrt{7}}{2} \right)^2 - \left( x + \frac{1}{2} \right)^2} + \sqrt{2} \times \frac{7}{4 \times 2} \sin^{- 1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{7}}{2}} \right) + C\]
\[ = \frac{2x + 1}{4} \sqrt{3 - 2x - 2 x^2} + \frac{7}{4\sqrt{2}} \sin^{- 1} \left( \frac{2x + 1}{\sqrt{7}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 11 | Page 154

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×