English

∫ 1 Cos X + √ 3 Sin X D X is Equal to (A) ∫ 1 Cos X + √ 3 Sin X D X (B) Log Tan ( X 2 − π 3 ) + C (C) Log Tan ( X 2 − π 3 ) + C (D) None of These - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

Options

  • `  log   tan (x/3  + π / 2) + C `

  • \[\text{ log  tan}   \left( \frac{x}{2} - \frac{\pi}{3} \right) + C\]

  • `   1/2  log   tan (x/2  + π /3 ) + C `

  • none of these

MCQ

Solution

 none of these

 

\[\int\frac{1}{\cos x + \sqrt{3}\sin x}dx\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \times \frac{1}{2} + \sin x \times \frac{\sqrt{3}}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \cdot \cos\frac{\pi}{3} + \sin x \cdot \sin\frac{\pi}{3}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos \left( x - \frac{\pi}{3} \right)}\]
\[ = \frac{1}{2}\int\sec \left( x - \frac{\pi}{3} \right)dx\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left\{ \frac{\pi}{4} + \frac{1}{2}\left( x - \frac{\pi}{3} \right) \right\} \right| + C\]
\[ = \frac{1}{2}\text{ ln  }\left| \tan \left( \frac{\pi}{4} + \frac{x}{2} - \frac{\pi}{6} \right) \right| + C\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left( \frac{x}{2} + \frac{\pi}{12} \right) \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 199]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 2 | Page 199

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×