English

∫ 2 X + 3 √ X 2 + 4 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{\left( 2x + 3 \right) dx}{\sqrt{x^2 + 4x + 5}}\]
\[ = \int\frac{\left( 2x + 4 - 1 \right)}{\sqrt{x^2 + 4x + 5}}dx\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 5}} - \int\frac{dx}{\sqrt{x^2 + 4x + 5}}\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 5}} - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1}}\]
\[\text{ Consider, }\]
\[ x^2 + 4x + 5 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[ \therefore I = \int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1^2}}\]
\[ = \int t^{- \frac{1}{2}} dt - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1^2}}\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} - \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 + 1} \right| + C\]
\[ = 2\sqrt{x^2 + 4x + 5} - \text{ log }\left| x + 2 + \sqrt{x^2 + 4x + 5} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 16 | Page 111

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×