English

∫ X 2 + 6 X − 8 X 3 − 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
Sum

Solution

We have,

\[I = \int\left( \frac{x^2 + 6x - 8}{x^3 - 4x} \right)dx\]

\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x^2 - 4 \right)}dx\]

\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}dx\]

\[Let \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x \right) \left( x + 2 \right) + C \left( x \right) \left( x - 2 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}\]

\[ \Rightarrow x^2 + 6x - 8 = A \left( x^2 - 4 \right) + B \left( x^2 + 2x \right) + C \left( x^2 - 2x \right)\]

Putting `x - 2 = 0`

\[ \Rightarrow x = 2\]

\[4 + 6 \times 2 - 8 = A \times 0 + B \left( 4 + 4 \right)\]

\[ \Rightarrow 8 = B \times 8\]

\[ \Rightarrow B = 1\]

Putting `x = - 2`

\[4 - 12 - 8 = A \times 0 + B \times 0 + C \times 8\]
\[ \Rightarrow C = - 2\]

Putting `x = 0`

\[ - 8 = A \left( - 4 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow A = 2\]

\[ \therefore I = \int\frac{2}{x} + \int\frac{dx}{x - 2} - 2\int\frac{dx}{x + 2}\]

\[ = 2 \log \left| x \right| + \log \left| x - 2 \right| - 2 \log \left| x + 2 \right| + C\]

\[ = \log x^2 + \log \left| x - 2 \right| - \log \left| x + 2 \right|^2 + C\]

\[ = \log \left| \frac{x^2 \left( x - 2 \right)}{\left( x + 2 \right)^2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 20 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×