Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\left( \frac{x^2 + 6x - 8}{x^3 - 4x} \right)dx\]
\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x^2 - 4 \right)}dx\]
\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}dx\]
\[Let \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2}\]
\[ \Rightarrow \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x \right) \left( x + 2 \right) + C \left( x \right) \left( x - 2 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}\]
\[ \Rightarrow x^2 + 6x - 8 = A \left( x^2 - 4 \right) + B \left( x^2 + 2x \right) + C \left( x^2 - 2x \right)\]
Putting `x - 2 = 0`
\[ \Rightarrow x = 2\]
\[4 + 6 \times 2 - 8 = A \times 0 + B \left( 4 + 4 \right)\]
\[ \Rightarrow 8 = B \times 8\]
\[ \Rightarrow B = 1\]
Putting `x = - 2`
\[4 - 12 - 8 = A \times 0 + B \times 0 + C \times 8\]
\[ \Rightarrow C = - 2\]
Putting `x = 0`
\[ - 8 = A \left( - 4 \right) + B \times 0 + C \times 0\]
\[ \Rightarrow A = 2\]
\[ \therefore I = \int\frac{2}{x} + \int\frac{dx}{x - 2} - 2\int\frac{dx}{x + 2}\]
\[ = 2 \log \left| x \right| + \log \left| x - 2 \right| - 2 \log \left| x + 2 \right| + C\]
\[ = \log x^2 + \log \left| x - 2 \right| - \log \left| x + 2 \right|^2 + C\]
\[ = \log \left| \frac{x^2 \left( x - 2 \right)}{\left( x + 2 \right)^2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]