English

∫ 1 √ 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{2x - x^2}}\]
\[ = \int\frac{dx}{\sqrt{2x - x^2 - 1 + 1}}\]
\[ = \int\frac{dx}{\sqrt{1 - \left( x^2 - 2x + 1 \right)}}\]
\[ = \int\frac{dx}{\sqrt{1 - \left( x - 1 \right)^2}} \]
\[ = \sin^{- 1} \left( x - 1 \right) + C \left[ \because \int\frac{dx}{\sqrt{a^2 - x^2}} = \sin^{- 1} \left( \frac{x}{a} \right) + C \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.17 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.17 | Q 1 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \tan^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×