Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
Sum
Solution
\[\int\frac{dx}{\sqrt{2x - x^2}}\]
\[ = \int\frac{dx}{\sqrt{2x - x^2 - 1 + 1}}\]
\[ = \int\frac{dx}{\sqrt{1 - \left( x^2 - 2x + 1 \right)}}\]
\[ = \int\frac{dx}{\sqrt{1 - \left( x - 1 \right)^2}} \]
\[ = \sin^{- 1} \left( x - 1 \right) + C \left[ \because \int\frac{dx}{\sqrt{a^2 - x^2}} = \sin^{- 1} \left( \frac{x}{a} \right) + C \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \cos^5 x \text{ dx }\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int \tan^4 x\ dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`